Activity-dependent metaplasticity of inhibitory and excitatory synaptic transmission in the lamprey spinal cord locomotor network.
نویسندگان
چکیده
Paired intracellular recordings have been used to examine the activity-dependent plasticity and neuromodulator-induced metaplasticity of synaptic inputs from identified inhibitory and excitatory interneurons in the lamprey spinal cord. Trains of spikes at 5-20 Hz were used to mimic the frequency of spiking that occurs in network interneurons during NMDA or brainstem-evoked locomotor activity. Inputs from inhibitory and excitatory interneurons exhibited similar activity-dependent changes, with synaptic depression developing during the spike train. The level of depression reached was greater with lower stimulation frequencies. Significant activity-dependent depression of inputs from excitatory interneurons and inhibitory crossed caudal interneurons, which are central elements in the patterning of network activity, usually developed between the fifth and tenth spikes in the train. Because these interneurons typically fire bursts of up to five spikes during locomotor activity, this activity-dependent plasticity will presumably not contribute to the patterning of network activity. However, in the presence of the neuromodulators substance P and 5-HT, significant activity-dependent metaplasticity of these inputs developed over the first five spikes in the train. Substance P induced significant activity-dependent depression of inhibitory but potentiation of excitatory interneuron inputs, whereas 5-HT induced significant activity-dependent potentiation of both inhibitory and excitatory interneuron inputs. Because these metaplastic effects are consistent with the substance P and 5-HT-induced modulation of the network output, activity-dependent metaplasticity could be a potential mechanism underlying the coordination and modulation of rhythmic network activity.
منابع مشابه
5-HT Modulation of identified segmental premotor interneurons in the lamprey spinal cord.
Ipsilaterally projecting spinal excitatory interneurons (EINs) generate the hemisegmental rhythmic locomotor activity in lamprey, while the commissural interneurons ensure proper left-right alternation. 5-HT is a potent modulator of the locomotor rhythm and is endogenously released from the spinal cord during fictive locomotion. The effect of 5-HT was investigated for three segmental premotor i...
متن کاملModulation of cellular and synaptic variability in the lamprey spinal cord.
Variability is increasingly recognized as a characteristic feature of cellular, synaptic, and network properties. While studies have traditionally focused on mean values, significant effects can result from changes in variance. This study has examined cellular and synaptic variability in the lamprey spinal cord and its modulation by the neuropeptide substance P. Cellular and synaptic variabilit...
متن کاملActivity-dependent feedforward inhibition modulates synaptic transmission in a spinal locomotor network.
The analysis of synaptic properties in neural networks has focused on the properties of individual synapses. As a result, little is known of how neural assemblies arise from the connectivity and functional properties of different classes of network neurons. I examined synaptic properties in the lamprey locomotor network. Here I show that, in addition to their monosynaptic inputs to motor neuron...
متن کاملSynaptic Variability Introduces State-Dependent Modulation of Excitatory Spinal Cord Synapses
The relevance of neuronal and synaptic variability remains unclear. Cellular and synaptic plasticity and neuromodulation are also variable. This could reflect state-dependent effects caused by the variable initial cellular or synaptic properties or direct variability in plasticity-inducing mechanisms. This study has examined state-dependent influences on synaptic plasticity at connections betwe...
متن کاملReticulospinal neurons receive direct spinobulbar inputs during locomotor activity in lamprey.
Reticulospinal neurons of the lamprey brain stem receive rhythmic input from the spinal cord during locomotor activity. The goal of the present study was to determine whether such spinal input has a direct component to reticulospinal neurons or depends on brain stem interneurons. To answer this question, an in vitro lamprey brain stem-spinal cord preparation was used with a diffusion barrier pl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 5 شماره
صفحات -
تاریخ انتشار 1999